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Introduction 

The principle of maximum path-entropy, which is also known as the principle of maximum 

caliber, is a generalization of the principle of maximum entropy to systems not necessarily close 

to equilibrium [1,2]. The principle of maximum path-entropy has recently been used to derive 

dynamical laws of transport, analyze single particle two-state dynamics, study few-state models 

of non-equilibrium processes, analyze the dynamics and fluctuations in biochemical reactions 

and cycles, and analyze ion-channel gating [3-7]. It has been shown that when a system such as 

an ion channel is modeled using an aggregated Markov model, methods that use steady-state 

gating statistics can typically find several models with different topologies that fit the data 

equally well [8]. We explore the use of the principle of maximum path-entropy to distinguish 

between different aggregated Markov models that all fit the steady-state gating data but have 

different topologies. 

Ion Channel Gating 

An Ion channel is a membrane protein that can be open, letting a particular species of ion pass 

through, or closed, blocking the passage of ions.  The gating can respond to external voltage, 

solute concentration, pressure, ligand interactions, etc.  

 

 

 

 

 

 

5 microseconds of patch-clamp data for an inositol trisphosphate receptor [9] 

 

The above graph represents a simple two-state Markov model of an ion channel. State C1 is a 

closed state, state O2 is an open state and Pij is the probability that the ion channel will make a 

transition from state i to state j in a time interval Δt. 

Aggregated States 

Markov models of ion channels usually have more than one closed state and one open state. 

Consider an ion-channel model represented by the following graph. 
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In this simple model there are two closed states, one open state, and transitions between states 1 

and 3 are not allowed.  In general, if Markov model states can have the same observable output 

they are called hidden states and if there is only one possible output for a state they are called 

aggregated states. So states 1 and 2 are aggregated states.  

 

The above is a plot of a three-state trajectory showing a time sequence of transitions between 

states 1, 2, and 3 and the corresponding sequence of open and closed transitions.  

Equivalent Models 

Consider the two models: 

Model CCO 

 

Model COC 

 

If QCCO is the transition rate matrix for the first model and QCOC is the rate matrix for the second 

model. Kienker [8] derived a similarity transformation such that if 

���� � �������� 

then both rate matrices give the same steady state open-time and closed-time distributions. In the 

sense that the steady-state distributions cannot be used to choose one model over the other, the 

models are said to be equivalent.  
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Principle of Maximum Path Entropy 

Let �	 be the probability that the system follows path Γ, where Γ is a time sequence of states.  To 

calculate the least biased probability distribution from observables we maximize the path entropy   


 � − ∑ �	 log (�		 ) 

subject to the constraints 

∑ �	 	 � 1      and       ∑ �	 ��		 � ⟨��⟩ 

where the ⟨��⟩’s are known expectation values and are observables. 

A dynamical partition function for trajectories of length T (= N·t) can be defined       

��(�) � � exp (� ����	)
�	

 

where the λm’s are the Lagrange multipliers associated with the constrained maximization of C.  

Expectation values can be calculated from Zd . 

⟨��⟩ �  1
��

 ��
 ��

 

Transients 

The principle of maximum path-entropy does not assume equilibrium or steady-state behavior 

and provides a general method of inference for non-equilibrium processes. [6] We now consider 

the question of whether or not the principle of maximum path-entropy can be used to distinguish 

between models which are equivalent  ̶  in the sense that they give the same steady-state open 

and closed time distributions  ̶  by applying it to the transient behavior of the model. 

An Example 

For a sufficiently small-time step, Kienker’s transformation can be applied to the probability 

matrix for finite time step Markov models. 

 

where pij is the probability that a transition from state i to state j occurs in time step Δt.  

Consider the specific probability matrix for the CCO model. 

 

By applying Kienker’s transformation, we get the probability matrix for the equivalent COC 

model 
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Following Stock, et.al [4] we can write the partition function for a three-state model in when the 

path length is N time steps and the initial state is state 3 (the open state) as 

��(!) � (1 1 1��"�# $001& 

For the CCO model  

⟨!��⟩ � 1��
 �� �'( 

where �'( � ln �"'(�. 

Results 

 

Conclusions 

As illustrated in the above figures, not only is the steady-state behavior of the CCO model and 

the COC model the same when the COC model parameters are calculated using Kienker’s 

transformation, but the transient behavior is also the same. Therefore, even though Kienker’s 

transformation was derived using the steady-state properties and principle of maximum path-

entropy applies when the system is not in a steady state, the principle of maximum path-entropy 

cannot be used to distinguish between equivalent aggregated states. 

The average number of O to C, open to 

closed transitions, per time step when the 

initial state is open using the example 

probability matrix. 

The average number of O to C to O 

transitions per time step when the initial state 

is the open state using the example 

probability matrix. 
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